Abstract
In the present study, an experiment was carried out on the postharvest of cucumber fruit during a 14-day shelf life. The aim was to assess the impact of calcium nanoparticles (CaNPs) blended with different concentrations of salicylic acid (SA) on the shelf life of cucumbers during the seasons of 2018 and 2019. The investigation further monitored the influences of CaNPs-SA on some physical properties of cucumber, including the percentage weight loss, color, and fruit firmness. In addition, chemical properties, such as total soluble solids (SSC%), total acidity (TA%), total soluble sugars, and chlorophyll pigmentation of the fruit skin, were assessed during a 14-day shelf lifeCell wall degradation enzymes (CWEAs) such as polygalacturonase (PG), cel-lulase (CEL), xylanase (XYL), and pectinase (PT) were also researched. In addition, the generation rates of H2O2 and O2•− were calculated, as well as the reduction of DPPH. The lipid peroxidation (malondialdehyde, MDA) and cell membrane permeability (IL%) of cell wall composites were also determined. CaNPs-SA at 2 mM suppressed CWEAs, preserved fruit quality, reduced weight loss throughout the shelf-life period, and reduced the percent leakage value. At this concentration, we also found the lowest levels of MDA and the highest levels of DPPH.
Funder
King Saud University (Riyadh, Saudi Arabia) for the funding of this research through Researchers Supporting Project number
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献