Simultaneous Profiling and Holistic Comparison of the Metabolomes among the Flower Buds of Panax ginseng, Panax quinquefolius, and Panax notoginseng by UHPLC/IM-QTOF-HDMSE-Based Metabolomics Analysis

Author:

Jia Li,Zuo Tiantian,Zhang Chunxia,Li Weiwei,Wang Hongda,Hu Ying,Wang Xiaoyan,Qian Yuexin,Yang WenzhiORCID,Yu Heshui

Abstract

The flower buds of three Panax species (PGF: flower bud of P. ginseng; PQF: flower bud of P. quinquefolius; PNF: flower bud of P. notoginseng), widely consumed as healthcare products, are easily confused particularly in the extracts or traditional Chinese medicine (TCM) formulae. We are aimed to develop an untargeted metabolomics approach, by ultra-high performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) to unveil the chemical markers diagnostic for the differentiation of PGF, PQF, and PNF. Key parameters affecting chromatographic separation and MS detection were optimized in sequence. Forty-two batches of flower bud samples were analyzed in negative high-definition MSE (HDMSE; enabling three-dimensional separations). Efficient metabolomics data processing was performed by Progenesis QI (Waters, Milford, MA, USA), while pattern-recognition chemometrics was applied for species classification and potential markers discovery. Reference compounds comparison, analysis of both HDMSE and targeted MS/MS data, and retrieval of an in-house ginsenoside library, were simultaneously utilized for the identification of discovered potential markers. Satisfactory conditions for metabolite profiling were achieved on a BEH Shield RP18 column and Vion™ IMS-QTOF instrument (Waters; by setting the capillary voltage of 1.0 kV and the cone of voltage 20 V) within 37 min. A total of 32 components were identified as the potential markers, of which Rb3, Ra1, isomer of m-Rc/m-Rb2/m-Rb3, isomer of Ra1/Ra2, Rb1, and isomer of Ra3, were the most important for differentiating among PGF, PQF, and PNF. Conclusively, UHPLC/IM-QTOF-MS-based metabolomics is a powerful tool for the authentication of TCM at the metabolome level.

Funder

National Natural Science Foundation of China

State Key Research and Development Project

Tianjin Municipal Education Commission Research Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3