Underutilized Agricultural Co-Product as a Sustainable Biofiller for Polyamide 6,6: Effect of Carbonization Temperature

Author:

Balint Thomas,Chang Boon PengORCID,Mohanty Amar K.,Misra Manjusri

Abstract

Polyamide 6,6 (PA66)-based biocomposites with low-cost carbonaceous natural fibers (i.e., soy hulls, co-product from soybean industry) were prepared through twin-screw extrusion and injection molding. The soy hull natural fiber was pyrolyzed at two different temperatures (500 °C and 900 °C denoted as BioC500 and BioC900 respectively) to obtain different types of biocarbons. The BioC500 preserved a higher number of functional groups as compared to BioC900. Higher graphitic carbon content was observed on the BioC900 than BioC500 as evident in Raman spectroscopy. Both biocarbons interact with the PA66 backbone through hydrogen bonding in different ways. BioC900 has a greater interaction with N-H stretching, while BioC500 interacts strongly with the amide I (C=O stretching) linkage. The BioC500 interrupts the crystallite growth of PA66 due to strong bond connection while the BioC900 promotes heterogeneous crystallization. Dynamic mechanical analysis shows that both biocarbons result in an increasing storage modulus and glass transition temperature with increasing content in the BioC/PA66 biocomposites over PA66. Rheological analysis shows that the incorporation of BioC900 results in decreasing melt viscosity of PA66, while the incorporation of BioC500 results in increasing the melt viscosity of PA66 due to greater filler–matrix adhesion. This study shows that pyrolyzed soy hull natural fiber can be processed effectively with a high temperature (>270 °C) engineering plastic for biocomposites fabrication with no degradation issues.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3