Abstract
Seventy-three samples of alcoholic beverages and juices that were purchased on the Polish market and home-made were analyzed for their elemental profiles. The levels of 23 metals were determined by ICP-MS (Ag, Ba, Bi, Cd, Co, Cr, Li, Mn, Ni, Pb, Sr and Tl), ICP-OES (Al, B, Ca, Cu, Fe, K, Mg, Na, Ti and Zn) and CVAAS (Hg) techniques in twenty-five samples of ciders widely available on the Polish market; six samples of home-made ciders; two samples of juices used in the production of these ciders; and forty samples of low-percentage, flavored alcoholic beverages based on beer. The gathered analytical data confirmed that the final elemental fingerprint of a product is affected by the elemental fingerprint of the ingredients used (apple variety) as well as the technology and equipment used by the producer, and in the case of commercial ciders, also the impact of type of the packaging used was proven. These factors are specific to each producer and the influence of the mentioned above parameters was revealed as a result of the performed analysis. Additionally, the inclusion of the home-made ciders in the data set helped us to understand the potential origin of some elements, from the raw materials to the final products. The applied statistical tests revealed (Kruskal–Wallis and ANOVA) the existence of statistically significant differences in the concentration of the following metals: Ag, Al, B, Bi, Co, Cr, Cu, Fe, K, Li, Mg, Na, Ni, Ti and Zn in terms of the type of cider origin (commercial and home-made). In turn, for different packaging (can or bottle) within one brand of commercial cider, the existence of statistically significant differences for Cu, Mn and Na was proved. The concentrations of all determined elements in the commercial cider from the Polish market and home-made cider samples can be considered as nontoxic, because the measured levels of elements indicated in the regulations were lower than the allowable limits. Moreover, the obtained results can be treated as preliminary for the potential authentication of products in order to distinguish the home-made (fake) from the authentic products, especially for premium-class alcoholic beverages.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science