Ribosome Biogenesis Regulator 1 Homolog (RRS1) Promotes Cisplatin Resistance by Regulating AEG-1 Abundance in Breast Cancer Cells

Author:

Song Junying1ORCID,Peng Cuixiu2,Wang Runze1,Hua Yanan3,Wu Qinglan1,Deng Lin1,Cao Yi1,Zhang Li4,Hou Lin1

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266011, China

2. Juxian No. 3 Middle School, No. 523 Chengyang South Road, Rizhao 267500, China

3. Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China

4. Experimental Center for Undergraduates of Pharmacy, School of Pharmacy, Qingdao University, No. 308 Ningxia Road, Qingdao 266011, China

Abstract

Many ribosomal proteins are highly expressed in tumors and are closely related to their diagnosis, prognosis and pathological characteristics. However, few studies are available on the correlation between ribosomal proteins and chemoresistance. RRS1 (human regulator of ribosome synthesis 1), a critical nuclear protein involved in ribosome biogenesis, also plays a key role in the genesis and development of breast cancer by protecting cancer cells from apoptosis. Given that apoptosis resistance is one of the causes of the cisplatin resistance of tumor cells, our aim was to determine the relationship between RRS1 and cisplatin resistance in breast cancer cells. Here, we report that RRS1 is associated with cisplatin resistance in breast cancer cells. RRS1 silencing increased the sensitivity of MCF-7/DDP cells to cisplatin and inhibited cancer cell proliferation by blocking cell cycle distribution and enhancing apoptosis. AEG-1 (astrocyte elevated gene-1) promotes drug resistance by interfering with the ubiquitination and proteasomal degradation of MDR1 (multidrug resistance gene 1), thereby enhancing drug efflux. We found that RRS1 binds to and stabilizes AEG-1 by inhibiting ubiquitination and subsequent proteasomal degradation, which then promotes drug efflux by upregulating MDR1. Furthermore, RRS1 also induces apoptosis resistance in breast cancer cells through the ERK/Bcl-2/BAX signaling pathway. Our study is the first to show that RRS1 sensitizes breast cancer cells to cisplatin by binding to AEG-1, and it provides a theoretical basis to improve the efficacy of cisplatin-based chemotherapy.

Funder

the Qingdao Startup and Innovation Leader Talent Plan

the National Natural Science Foundation of China

the Chinese Medicine Projects in Shandong Province

the Key research and development project of Shandong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3