The Phenomenon of Self-Induced Diastereomeric Anisochrony and Its Implications in NMR Spectroscopy

Author:

Aiello Federica1ORCID,Uccello Barretta Gloria2ORCID,Balzano Federica2ORCID,Spiaggia Fabio2

Affiliation:

1. National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Via G. Moruzzi 1, 56124 Pisa, Italy

2. Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy

Abstract

Nuclear magnetic resonance (NMR) spectroscopy is an analytical technique largely applied in the analysis of discrimination processes involving enantiomeric substrates and chiral agents, which can interact with the analyte either via covalent bonding or via formation of diastereomeric solvates. However, enantiodiscrimination has been observed, in some cases, even in the absence of any additional chiral selector. The reasons behind this phenomenon must be found in the capability of some chiral substrates to interact with themselves by forming diastereomeric solvates in solution that can generate nonequivalences in the NMR spectra of enantiomerically enriched mixtures. As a result, differentiation of enantiomers is observed, thus allowing the quantification of the enantiomeric composition of the mixture under investigation. The tendency of certain substrates to self-aggregate and to generate diastereomeric adducts in solution can be defined as Self-Induced Diastereomeric Anisochrony (SIDA), but other acronyms have been used to refer to this phenomenon. In the present work, an overview of SIDA processes investigated via NMR spectroscopy will be provided, with a particular emphasis on the nature of the substrates involved, on the interaction mechanisms at the basis of the phenomenon, and on theoretical treatments proposed in the literature to explain them.

Funder

PRA—Progetti di Ricerca di Ateneo”

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3