Biosynthesis of Silver Nanoparticles and Exploring Their Potential of Reducing the Contamination of the In Vitro Culture Media and Inducing the Callus Growth of Rumex nervosus Explants

Author:

Alfarraj Norah S.1,Tarroum Mohamed1ORCID,Al-Qurainy Fahad1,Nadeem Mohammad1,Khan Salim1,Salih Abdalrhaman M.1ORCID,Shaikhaldein Hassan O.1ORCID,Al-Hashimi Abdulrahman1ORCID,Alansi Saleh1,Perveen Kahkashan1ORCID

Affiliation:

1. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

Among biological methods, green synthesis of the nanomaterials using plant extracts was shown to be an environmentally friendly, economical, and simple approach. In the current study, the biogenic synthesis of silver nanoparticles (AgNPs) was achieved using the leaf extract of Hibiscus tiliaceus, in order to prevent the contamination of the tissue culture media and induce callus growth. The nanostructures of the fabricated AgNPs were characterized using UV–visible spectroscopy, Fourier transform infra-red spectra (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta size, and zeta potential techniques. Our results indicate that The UV–vis spectrum of AgNPs exhibited an absorption band at 415 nm. The FTIR analysis identified the functional groups which could involve in the reduction of silver ions to AgNPs, this was also confirmed by the (hkl) diffraction peaks in the XRD diffractogram. Moreover, the TEM analysis showed a spherical nanoparticle with a size ranging from 21 and 26 nm. Thereafter, the potential antibacterial and antifungal activity of the biogenic AgNPs was evaluated against Bacillus pumilus and Alternaria alternata which were isolated from the in vitro culture media and identified based on 16S rDNA and ITS rDNA sequences, respectively. The results showed that the AgNPs significantly inhibited the growth of Alternaria alternata and Bacillus pumilus at all applied concentrations (5, 10, 20 and 40 mg/L). Compared to the control more fungal radial growth reduction (42.59%,) and bacterial inhibition (98.12%) were registered in the plates containing high doses of AgNPs (40 mg/L). Using Rumex nervosus explants, the biosynthesized AgNPs were tested for their impact to promote callus growth. The obtained results showed a significant effect of AgNPs on callus fresh weight at all applied doses. Moreover, AgNPs treatments showed a polymorphism of 12.5% which was detected by RAPD markers. In summary, the results revealed that AgNPs (40 mg/L) can be effectively added to the in vitro culture media for reducing microbial contamination and improving callus growth while greatly maintaining its genetic stability.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3