New Symmetrical U- and Wavy-Shaped Supramolecular H-Bonded Systems; Geometrical and Mesomorphic Approaches

Author:

Al-Mutabagani Laila A.,Alshabanah Latifah Abdullah,Ahmed Hoda A.ORCID,Hagar MohamedORCID,Al-Ola Khulood A. Abu

Abstract

New mesomorphic symmetrical 2:1 supramolecular H-bonded complexes of seven phenyl rings were prepared between 4-n-alkoxyphenylazobenzoic acids and 4-(2-(pyridin-3-yl)diazenyl)phenyl nicotinate. Mesomorphic studies of the prepared complexes were investigated using differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). Fermi bands of the formed H-bonded interactions were confirmed by FT-IR spectroscopy. Geometrical parameters for all complexes were performed using the density functional theory (DFT) calculations method. Theoretical results revealed that the prepared H-bonded complexes are in non-linear geometry with U-shaped and wavy-shaped geometrical structures; however, the greater linearity of the wavy-shaped compounds could be the reason for their stability with respect to the U-shaped conformer. Moreover, the stable, wavy shape of supramolecular H-bonded complexes (SMHBCs) has been used to illustrate mesomeric behavior in terms of the molecular interaction. The experimental mesomorphic investigations revealed that all complexes possess enantiotropic smectic C phase. Phases were confirmed by miscibility with a standard smectic C (SmC) compound. A comparison was constructed to investigate the effect of incorporating azophenyl moiety into the mesomeric behavior of the corresponding five-membered complexes. It was found that the addition of the extra phenylazo group to the acid moiety has a great increment of the mesophase stability (TC) values with respect to the monotropic SmC phase of the five aromatic systems to the high stable enantiotropic SmC mesophase.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3