Effects and Mechanism of the Leontopodium alpinum Callus Culture Extract on Blue Light Damage in Human Foreskin Fibroblasts

Author:

Meng Xianyao1,Guo Miaomiao1,Geng Zaijun1,Wang Ziqiang1,Zhang Huirong1,Li Sunhua2,Ling Xiao3,Li Li1

Affiliation:

1. College of Chemistry and Materials Engineering, Beijing Technology & Business University, Beijing 100048, China

2. Acelbio (Chongqing) Biotechnology Co., Ltd., Chongqing 404100, China

3. Beijing Lan Divine Technology Co., Ltd., Beijing 100872, China

Abstract

Leontopodium alpinum is an important source of raw material for food, medicine, and modern cosmetics. The purpose of this study was to develop a new application for protection against blue light damage. To investigate the effects and mechanism of action of Leontopodium alpinum callus culture extract (LACCE) on blue light damage, a blue-light-induced human foreskin fibroblast damage model was established. The contents of collagen (COL-I), matrix metalloproteinase 1 (MMP-1), and opsin 3 (OPN3) were detected using enzyme-linked immunosorbent assays and Western blotting. The calcium influx and reactive oxygen species (ROS) levels were measured via flow cytometry and the results showed that the LACCE (10–15 mg/mL) promoted the production of COL-I, inhibited the secretion of MMP-1, OPN3, ROS and calcium influx, and may play a role in inhibiting the activation of blue light on the OPN3-calcium pathway. Thereafter, high-performance liquid chromatography and ultra-performance liquid chromatography–tandem mass spectrometry were used to quantitatively analyze the contents of nine active ingredients in the LACCE. The results indicated that LACCE has an anti-blue-light-damage effect and provides theoretical support for the development of new raw materials in the natural food, medicine, and skin care industries.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3