PET Imaging of Fructose Metabolism in a Rodent Model of Neuroinflammation with 6-[18F]fluoro-6-deoxy-D-fructose

Author:

Boyle Amanda J.,Murrell EmilyORCID,Tong JunchaoORCID,Schifani Christin,Narvaez Andrea,Wuest Melinda,West FrederickORCID,Wuest Frank,Vasdev NeilORCID

Abstract

Fluorine-18 labeled 6-fluoro-6-deoxy-D-fructose (6-[18F]FDF) targets the fructose-preferred facilitative hexose transporter GLUT5, which is expressed predominantly in brain microglia and activated in response to inflammatory stimuli. We hypothesize that 6-[18F]FDF will specifically image microglia following neuroinflammatory insult. 6-[18F]FDF and, for comparison, [18F]FDG were evaluated in unilateral intra-striatal lipopolysaccharide (LPS)-injected male and female rats (50 µg/animal) by longitudinal dynamic PET imaging in vivo. In LPS-injected rats, increased accumulation of 6-[18F]FDF was observed at 48 h post-LPS injection, with plateaued uptake (60–120 min) that was significantly higher in the ipsilateral vs. contralateral striatum (0.985 ± 0.047 and 0.819 ± 0.033 SUV, respectively; p = 0.002, n = 4M/3F). The ipsilateral–contralateral difference in striatal 6-[18F]FDF uptake expressed as binding potential (BPSRTM) peaked at 48 h (0.19 ± 0.11) and was significantly decreased at one and two weeks. In contrast, increased [18F]FDG uptake in the ipsilateral striatum was highest at one week post-LPS injection (BPSRTM = 0.25 ± 0.06, n = 4M). Iba-1 and GFAP immunohistochemistry confirmed LPS-induced activation of microglia and astrocytes, respectively, in ipsilateral striatum. This proof-of-concept study revealed an early response of 6-[18F]FDF to neuroinflammatory stimuli in rat brain. 6-[18F]FDF represents a potential PET radiotracer for imaging microglial GLUT5 density in brain with applications in neuroinflammatory and neurodegenerative diseases.

Funder

CAMH Foundation

Azrieli Foundation

Canada Research Chairs Program

Canada Foundation for Innovation

Ontario Research Fund

Enigma Biomedical Group

Brain and Behavior Research Foundation

Dianne and Irving Kipnes Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference73 articles.

1. Neuroinflammation as a Common Feature of Neurodegenerative Disorders;Maccioni;Front. Pharmacol.,2019

2. PET Imaging of Neuroinflammation in Alzheimer’s Disease;Zhou;Front. Immunol.,2021

3. Neuroinflammation in Neurodegenerative Disorders-a Review;Schain;Curr. Neurol. Neurosci. Rep.,2017

4. Towards PET imaging of the dynamic phenotypes of microglia;Beaino;Clin. Exp. Immunol.,2021

5. Enhanced expression of peripheral benzodiazepine receptors in trimethyltin-exposed rat brain: A biomarker of neurotoxicity;Guilarte;Neurotoxicology,1995

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3