Assessment of a Computational Approach to Predict Drug Resistance Mutations for HIV, HBV and SARS-CoV-2

Author:

Patel DharmeshkumarORCID,Ono Suzane K.,Bassit Leda,Verma Kiran,Amblard Franck,Schinazi Raymond F.

Abstract

Viral resistance is a worldwide problem mitigating the effectiveness of antiviral drugs. Mutations in the drug-targeting proteins are the primary mechanism for the emergence of drug resistance. It is essential to identify the drug resistance mutations to elucidate the mechanism of resistance and to suggest promising treatment strategies to counter the drug resistance. However, experimental identification of drug resistance mutations is challenging, laborious and time-consuming. Hence, effective and time-saving computational structure-based approaches for predicting drug resistance mutations are essential and are of high interest in drug discovery research. However, these approaches are dependent on accurate estimation of binding free energies which indirectly correlate to the computational cost. Towards this goal, we developed a computational workflow to predict drug resistance mutations for any viral proteins where the structure is known. This approach can qualitatively predict the change in binding free energies due to mutations through residue scanning and Prime MM-GBSA calculations. To test the approach, we predicted resistance mutations in HIV-RT selected by (-)-FTC and demonstrated accurate identification of the clinical mutations. Furthermore, we predicted resistance mutations in HBV core protein for GLP-26 and in SARS-CoV-2 3CLpro for nirmatrelvir. Mutagenesis experiments were performed on two predicted resistance and three predicted sensitivity mutations in HBV core protein for GLP-26, corroborating the accuracy of the predictions.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3