Effect of Polyethylene Glycol Additive on the Structure and Performance of Fabric-Reinforced Thin Film Composite

Author:

Wang Xiao1ORCID,Zhao Yuntao23,Wen Xueyou2

Affiliation:

1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China

2. School of Water Resources and Environment, Hebei GEO University, Shijiazhuang 050031, China

3. Hebei Key Laboratory of Sustained Utilization and Development of Water Resources, Shijiazhuang 050031, China

Abstract

Fabric-reinforced thin film composite (TFC) membranes exhibit outstanding mechanical durability over free-standing membranes for commercial applications. In this study, polyethylene glycol (PEG) was incorporated to modify the polysulfone (PSU) supported fabric-reinforced TFC membrane for forward osmosis (FO). The effects of PEG content and molecular weight on the structure, material property and FO performance of the membrane were investigated comprehensively, and the corresponding mechanisms were revealed. The membrane prepared by using 400 g/mol PEG exhibited better FO performances than those of membranes with 1000 and 2000 g/mol PEG, and 20 wt.% was demonstrated to be the optimal PEG content in the casting solution. The permselectivity of the membrane was further improved by reducing the PSU concentration. The optimal TFC-FO membrane had a water flux (Jw) of 25.0 LMH using deionized (DI) water feed and 1 M NaCl draw solution, and the specific reverse salt flux (Js/Jw) was as low as 0.12 g/L. The degree of internal concentration polarization (ICP) was significantly mitigated. The membrane behaved superior to the commercially available fabric-reinforced membranes. This work provides a simple and low-cost approach in the development TFC-FO membrane and shows great potential in the large-scale production for practical applications.

Funder

National Natural Science Foundation of China

Science and Technology Project of Hebei Education Department

Open Fund for Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure

Chinese Academy of Sciences (CAS) “Light of West China” Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3