Dexamethasone-Induced Mitochondrial Dysfunction and Insulin Resistance-Study in 3T3-L1 Adipocytes and Mitochondria Isolated from Mouse Liver

Author:

Luan GuangxiangORCID,Li GangORCID,Ma Xiao,Jin Youcai,Hu Na,Li Ji,Wang Zhenhua,Wang Honglun

Abstract

Dexamethasone is a glucocorticoid analog, which is reported to induce insulin resistance and to exacerbate diabetic symptoms. In this study, we investigated the association between mitochondrial dysfunction and the pathophysiology of dexamethasone-induced insulin resistance. An insulin resistance model in 3T3-L1 adipocyte was established by 48-h treatment of 1 μM dexamethasone, followed with the detection of mitochondrial function. Results showed that dexamethasone impaired insulin-induced glucose uptake and caused mitochondrial dysfunction. Abnormality in mitochondrial function was supported by decreased intracellular ATP and mitochondrial membrane potential (MMP), increased intracellular and mitochondrial reactive oxygen species (ROS) and mtDNA damage. Mitochondrial dynamic changes and biogenesis were suggested by decreased Drp1, increased Mfn2, and decreased PGC-1, NRF1, and TFam, respectively. The mitochondrial DNA (mtDNA) copy number exhibited no change while the mitochondrial mass increased. In agreement, studies in isolated mitochondria from mouse liver also showed dexamethasone-induced reduction of mitochondrial respiratory function, as suggested by decreased mitochondrial respiration controlling rate (RCR), lower MMP, declined ATP synthesis, opening of the mitochondrial permeability transition pore (mPTP), damage of mtDNA, and the accumulation of ROS. In summary, our study suggests that mitochondrial dysfunction occurs along with dexamethasone-induced insulin resistance in 3T3 L1 adipocytes and might be a potential mechanism of dexamethasone-induced insulin resistance.

Funder

National Science Foundation of China

Qinghai Provincial Science Foundation

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3