Effects of Sintering Conditions on Giant Dielectric and Nonlinear Current–Voltage Properties of TiO2-Excessive Na1/2Y1/2Cu3Ti4.1O12 Ceramics

Author:

Saengvong Pariwat,Boonlakhorn JakkreeORCID,Chanlek Narong,Phromviyo Nutthakritta,Harnchana ViyadaORCID,Moontragoon Pairot,Srepusharawoot Pornjuk,Krongsuk Sriprajak,Thongbai PrasitORCID

Abstract

The effects of the sintering conditions on the phase compositions, microstructure, electrical properties, and dielectric responses of TiO2-excessive Na1/2Y1/2Cu3Ti4.1O12 ceramics prepared by a solid-state reaction method were investigated. A pure phase of the Na1/2Y1/2Cu3Ti4.1O12 ceramic was achieved in all sintered ceramics. The mean grain size slightly increased with increasing sintering time (from 1 to 15 h after sintering at 1070 °C) and sintering temperature from 1070 to 1090 °C for 5 h. The primary elements were dispersed in the microstructure. Low dielectric loss tangents (tan δ~0.018–0.022) were obtained. Moreover, the dielectric constant increased from ε′~5396 to 25,565 upon changing the sintering conditions. The lowest tan δ of 0.009 at 1 kHz was obtained. The electrical responses of the semiconducting grain and insulating grain boundary were studied using impedance and admittance spectroscopies. The breakdown voltage and nonlinear coefficient decreased significantly as the sintering temperature and time increased. The presence of Cu+, Cu3+, and Ti3+ was examined using X-ray photoelectron spectroscopy, confirming the formation of semiconducting grains. The dielectric and electrical properties were described using Maxwell–Wagner relaxation, based on the internal barrier layer capacitor model.

Funder

National Science, Research and Innovation Fund

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3