Novel Thiazolylketenyl Quinazolinones as Potential Anti-MRSA Agents and Allosteric Modulator for PBP2a

Author:

Dai Jie1,Battini Narsaiah1,Zang Zhonglin1,Luo Yan2,Zhou Chenghe1ORCID

Affiliation:

1. Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China

2. College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China

Abstract

Bacterial infections caused by methicillin-resistant Staphylococcus aureus have seriously threatened public health. There is an urgent need to propose an existing regimen to overcome multidrug resistance of MRSA. A unique class of novel anti-MRSA thiazolylketenyl quinazolinones (TQs) and their analogs were developed. Some synthesized compounds showed good bacteriostatic potency. Especially TQ 4 was found to exhibit excellent inhibition against MRSA with a low MIC of 0.5 μg/mL, which was 8-fold more effective than norfloxacin. The combination of TQ 4 with cefdinir showed stronger antibacterial potency. Further investigation revealed that TQ 4, with low hemolytic toxicity and low drug resistance, was not only able to inhibit biofilm formation but also could reduce MRSA metabolic activity and showed good drug-likeness. Mechanistic explorations revealed that TQ 4 could cause leakage of proteins by disrupting membrane integrity and block DNA replication by intercalated DNA. Furthermore, the synergistic antibacterial effect with cefdinir might be attributed to TQ 4 with the ability to induce PBP2a allosteric regulation of MRSA and further trigger the opening of the active site to promote the binding of cefdinir to the active site, thus inhibiting the expression of PBP2a, thereby overcoming MRSA resistance and significantly enhancing the anti-MRSA activity of cefdinir. A new strategy provided by these findings was that TQ 4, possessing both excellent anti-MRSA activity and allosteric effect of PBP2a, merited further development as a novel class of antibacterial agents to overcome increasingly severe MRSA infections.

Funder

National Natural Science Foundation of China (NSFC), China

Southwest University, China

International Young Scientists from International (Regional) Cooperation and Exchange Program of NSFC

Central Universities of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3