Efficient Conversion of Lignin to Aromatics via Catalytic Fast Pyrolysis over Niobium-Doped HZSM-5

Author:

Li Zhen1,Zhang Huihui1,Yang Deshi1,Hu Zhipeng1,Wang Fengqiang1,Zhang Zhijun1

Affiliation:

1. Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, China

Abstract

A niobium-doped HZSM-5 (H[Nb]ZSM-5) was prepared by a hydrothermal synthesis method. The morphology, phase structure, composition, pore structure, and acid content of the catalyst were characterized using a series of analysis techniques such as scanning electron microscope (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption, and temperature programmed desorption measurements (NH3-TPD). The H[Nb]ZSM-5 catalyst fully remained within the crystal framework and pore structure of HZSM-5. Meanwhile, introduction of niobium (V) endowed the catalyst with both Lewis acid and Bronsted acid sites. Catalytic fast pyrolysis (CFP) of alkali lignin was carried out through a pyrolysis and gas chromatography-mass spectrometry (Py-GC/MS) at 650 °C and atmospheric pressure. The results indicated that H[Nb]ZSM-5 can efficiently and selectively convert lignin into monoaromatic hydrocarbons (MAHs), compared to the control HZSM-5. Catalyzed by H[Nb]ZSM-5, the content of MAHs and aliphatic hydrocarbons reached 43.4% and 20.8%, respectively; while under the catalysis of HZSM-5, these values were 35.5% and 3.2%, respectively. H[Nb]ZSM-5 remarkably lowered the phenol content to approximately 2.8%, which is far lower than the content (24.9%) obtained under HZSM-5 catalysis.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3