Abstract
Surface modification of electrodes with glycans was investigated as a strategy for modulating the development of electrocatalytic biofilms for microbial fuel cell applications. Covalent attachment of phenyl-mannoside and phenyl-lactoside adlayers on graphite rod electrodes was achieved via electrochemically assisted grafting of aryldiazonium cations from solution. To test the effects of the specific bio-functionalities, modified and unmodified graphite rods were used as anodes in two-chamber microbial fuel cell devices. Devices were set up with wastewater as inoculum and acetate as nutrient and their performance, in terms of output potential (open circuit and 1 kΩ load) and peak power output, was monitored over two months. The presence of glycans was found to lead to significant differences in startup times and peak power outputs. Lactosides were found to inhibit the development of biofilms when compared to bare graphite. Mannosides were found, instead, to promote exoelectrogenic biofilm adhesion and anode colonization, a finding that is supported by quartz crystal microbalance experiments in inoculum media. These differences were observed despite both adlayers possessing thickness in the nm range and similar hydrophilic character. This suggests that specific glycan-mediated bioaffinity interactions can be leveraged to direct the development of biotic electrocatalysts in bioelectrochemical systems and microbial fuel cell devices.
Funder
H2020 Marie Skłodowska-Curie Actions
Science Foundation Ireland
France-Ireland PHC ULYSSES
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献