Effects of Allyl Isothiocyanate on Oxidative and Inflammatory Stress in Type 2 Diabetic Rats

Author:

Okulicz MonikaORCID,Hertig Iwona,Król Ewelina,Szkudelski Tomasz

Abstract

Oxidative stress and inflammation play a crucial role in the pathogenesis and progression of diabetes. Currently, there is a growing need to exploit plant-derived bioactive compounds to support conventional therapies. The purpose of this study was to explore allyl isothiocyanate (AITC) potency in reducing oxidative and inflammatory stress along with its profitable modulation trace element status in pathological conditions such as diabetes. Two weeks of oral AITC treatments (2.5, 5, and 25 mg/kg body weight per day) were evaluated in Wistar rats with diabetes induced by a high-fat diet and streptozotocin. The study included AITC influence on antioxidant factors (SOD, CAT, GST, Nrf2), stress and inflammatory markers (cortisol, CRP, IL-1β, IL-6, TNFα, NF-κB), lipid peroxidation indices (TBARS, -SH groups), and trace element status (Fe, Zn, and Cu) in the detoxification and lymphoid organs. Independently of dose, AITC increased cortisol levels in rat blood serum and decreased total thiol groups (T-SH) and protein-bound thiol groups (PB-SH) collaterally with raised thiobarbituric acid reactive substances (TBARS) in diabetic rat liver. The inflammation and oxidative effects were enhanced by an AITC dose increase. The highest dose of AITC, 25 mg/kg b.w., strongly affected the inflammation process by increasing IL-6, IL-1β, and TNFα in the blood serum, and it upregulated Nrf2 transcription factor with increased SOD, GPx, and GST activities in the liver. AITC showed an equivocal effect on profitable modulation of disturbances in mineral homeostasis in the liver, kidney, and spleen. Our findings revealed that two-week AITC treatment exacerbated oxidative and inflammation status in diabetic rats.

Funder

National Science Center

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3