Abstract
Broussonetia kazinoki has been used as a traditional medicine for the treatment of burns and acne, and its extracts have been found to show tyrosinase inhibitory and anticancer activities. In this study, the tyrosinase inhibitory and cytotoxic activities of B. kazinoki were explored, leading to the isolation of kazinol C (1), kazinol E (2), kazinol F (3), broussonol N (4), and kazinol X (5), of which the compounds 4 and 5 have not been previously reported. Microbial transformation has been recognized as an efficient tool to generate more active metabolites. Microbial transformation of the major compounds 1 and 3 was conducted with Mucor hiemalis, where four glucosylated metabolites (6–9) were produced from 1, while one hydroxylated (10) and one glucosylated (11) metabolites were obtained from 3. Structures of the isolated metabolites were determined by extensive spectroscopic analyses. All compounds were evaluated for their tyrosinase inhibitory and cytotoxic activities. Compound 3 and its metabolites, kazinol Y (10) and kazinol F-4″-O-β-d-glucopyranoside (11), exhibited the most potent tyrosinase inhibitory activities with the IC50 values ranging from 0.71 to 3.36 µM. Meanwhile, none of the metabolites, except for kazinol C-2′,3″-di-O-β-d-glucopyranoside (7), showed moderate cytotoxic activities (IC50 17.80 to 24.22 µM) against A375P, B16F10 and B16F1 cell lines.
Funder
National Research Foundation of Korea
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science