In Vitro Anti-Inflammatory Activity of Methyl Derivatives of Flavanone

Author:

Kłósek Małgorzata1ORCID,Krawczyk-Łebek Agnieszka2ORCID,Kostrzewa-Susłow Edyta2ORCID,Szliszka Ewelina1,Bronikowska Joanna1,Jaworska Dagmara1ORCID,Pietsz Grażyna1,Czuba Zenon P.1ORCID

Affiliation:

1. Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland

2. Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland

Abstract

Inflammation plays an important role in the immune defense against injury and infection agents. However, the inflammatory chronic process may lead to neurodegenerative diseases, atherosclerosis, inflammatory bowel diseases, or cancer. Flavanones present in citrus fruits exhibit biological activities, including anti-oxidative and anti-inflammatory properties. The beneficial effects of flavanones have been found based on in vitro cell cultures and animal studies. A suitable in vitro model for studying the inflammatory process are macrophages (RAW264.7 cell line) because, after stimulation using lipopolysaccharide (LPS), they release inflammatory cytokines involved in the immune response. We determined the nitrite concentration in the macrophage cell culture and detected ROS using chemiluminescence. Additionally, we measured the production of selected cytokines using the Bio-Plex Magnetic Luminex Assay and the Bio-PlexTM 200 System. For the first time, we have shown that methyl derivatives of flavanone inhibit NO and chemiluminescence generated via LPS-stimulated macrophages. Moreover, the tested compounds at 1–20 µM dose-dependently modulate proinflammatory cytokine production (IL-1β, IL-6, IL-12p40, IL-12p70, and TNF-α) in stimulated RAW264.7 cells. The 2′-methylflavanone (5B) and the 3′-methylflavanone (6B) possess the strongest anti-inflammatory activity among all the tested flavanone derivatives. These compounds reduce the concentration of IL-6, IL-12p40, and IL12p70 compared to the core flavanone structure. Moreover, 2′-methylflavanone reduces TNF-α, and 3′-methylflavanone reduces IL-1β secreted by RAW264.7 cells.

Funder

the Medical University of Silesia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3