Corn Cobs’ Biochar as Green Host of Salt Hydrates for Enhancing the Water Sorption Kinetics in Thermochemical Heat Storage Systems

Author:

Nguyen Minh Hoang12ORCID,Zbair Mohamed12ORCID,Dutournié Patrick12ORCID,Limousy Lionel12ORCID,Bennici Simona12ORCID

Affiliation:

1. Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France

2. Université de Strasbourg, F-67000 Strasbourg, France

Abstract

Heat storage technologies are essential for increasing the use of solar energy in the household sector. Their development can be achieved by designing new storage materials; one way is to impregnate a porous matrix with hygroscopic salts. In this article, the possibility of using biochar-based composite sorbents to develop promising new heat storage materials for efficient thermal storage is explored. Biochar-based composites with defined salt loadings (5, 10, 15, and 20%) were produced by impregnating MgSO4 into a biochar matrix derived from corn cobs. The new materials demonstrated a high water sorption capacity of 0.24 g/g (20MgCC). After six successive charging-discharging cycles (dehydration/dehydration cycles), only a negligible variation of the heat released and the water uptake was measured, confirming the absence of deactivation of 20MgCC upon cycling. The new 20MgCC composite showed an energy storage density of 635 J/g (Tads = 30 °C and RH = 60%), higher than that of other composites containing a similar amount of hydrate salt. The macroporous nature of this biochar increases the available surface for salt deposition. During the hydration step, the water molecules effectively diffuse through a homogeneous layer of salt, as described by the intra-particle model applied in this work. The new efficient biochar-based composites open a low-carbon path for the production of sustainable thermal energy storage materials and applications.

Funder

Region Grand Est

IS2M “Projets Structurants”

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3