A Density Functional Study on Ethylene Trimerization and Tetramerization Using Real Sasol Cr-PNP Catalysts

Author:

Cheong Minserk1,Singh Ajeet1ORCID

Affiliation:

1. Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea

Abstract

To gain molecular-level insight into the intricate features of the catalytic behavior of chromium–diphosphine complexes regarding ethylene tri- and tetramerizations, we performed density functional theory (DFT) calculations. The selective formation of 1-hexene and 1-octene by the tri- and tetramerizations of ethylene are generally accepted to follow the metallacycle mechanism. To explore the mechanism of ethylene tri- and tetramerizations, we used a real Sasol chromium complex with a nitrogen-bridged diphosphine ligand with ortho- and para-methoxyaryl substituents. We explore the trimerization mechanism for ethylene first and, later on for comparison, we extend the potential energy surfaces (PES) for the tetramerization of ethylene with both catalysts. The calculated results reveal that the formation of 1-hexene and 1-octene with the ortho-methoxyaryl and para-methoxyaryl Cr-PNP catalysts have nearly similar potential energy surfaces (PES). From the calculated results important insights are gained into the tri- and tetramerizations. The tetramerization of ethylene with the para-methoxyaryl Cr-PNP catalyst lowers the barrier height by ~2.6 kcal/mol compared to that of ethylene with the ortho-methoxyaryl Cr-PNP catalyst. The selectivity toward trimerization or tetramerization comes from whether the energy barrier for ethylene insertion to metallacycloheptane is higher than β-hydride transfer to make 1-hexene. The metallacycle mechanism with Cr (I)–Cr (III) intermediates is found to be the most favored, with the oxidative coupling of the two coordinated ethylenes to form chromacyclopentane being the rate-determining step.

Funder

KIST Institutional Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3