Kinetics and Mechanism of In(III) Ions Electroreduction on Cyclically Renewable Liquid Silver Amalgam Film Electrode: Significance of the Active Complexes of In(III)—Acetazolamide

Author:

Nosal-Wiercińska Agnieszka1,Martyna Marlena1,Pawlak Alicja1,Bazan-Woźniak Aleksandra2ORCID,Pietrzak Robert2,Yilmaz Selehatin3ORCID,Yağmur Kabaş Sultan4ORCID,Szabelska Anna5

Affiliation:

1. Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland

2. Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland

3. Department of Chemistry, Faculty of Science and Arts, Çanakkale Onsekiz Mart University, Çanakkale 17020, Turkey

4. Department of Chemistry and Chemical Processing Technology Programs, Program of Laboratory Technology, Lapseki Vocational School, Canakkale Onsekiz Mart University, Lapseki, Çanakkale 17020, Turkey

5. Department of Prosthetic Dentistry, Medical University in Lublin, Karmelicka Str. 7, 20-093 Lublin, Poland

Abstract

The results of kinetic measurements revealed an accelerating effect of acetazolamide (ACT) on the multistep In(III) ions electroreduction in chlorates(VII) on a novel, cyclically renewable liquid silver amalgam film electrode (R–AgLAFE). The kinetic and thermodynamic parameters were determined by applying the DC polarography, square-wave (SWV) and cyclic voltammetry (CV), as well as electrochemical impedance spectroscopy (EIS). It was shown that ACT catalyzed the electrode reaction (“cap-pair” effect) by adsorbing on the surface of the R–AgLAFE electrode. The catalytic activity of ACT was explained as related to its ability to form active In(III)- acetazolamide complexes on the electrode surface, facilitating the electron transfer process. The active complexes constitute a substrate in the electroreduction process and their different structures and properties are responsible for differences in the catalytic activity. The determined values of the activation energy ΔH≠ point to the catalytic activity of ACT in the In(III) ions electroreduction process in chlorates(VII). Analysis of the standard entropy values ΔS0 confirm changes in the dynamics of the electrode process.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3