Synthesis, Solution, and Solid State Properties of Homological Dialkylated Naphthalene Diimides—A Systematic Review of Molecules for Next-Generation Organic Electronics

Author:

Chlebosz Dorota12,Goldeman Waldemar3ORCID,Janus Krzysztof12,Szuster Michał1,Kiersnowski Adam12ORCID

Affiliation:

1. Department of Physical and Quantum Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland

2. The Leibniz Institute of Polymer Research, Hohe Strasse 6, D-01069 Dresden, Germany

3. Department of Medicinal and Organic Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland

Abstract

This systematic study aimed at finding a correlation between molecular structure, solubility, self-assembly, and electronic properties of a homological series of N-alkylated naphthalene diimides (NDIs). NDIs are known for their n-type carrier mobility and, therefore, have potential in the field of organic electronics, photovoltaics, and sensors. For the purpose of this study, nine symmetrical N,N′-dialkylated naphthalene diimides (NDIC3-NDIC11) were synthesized in the reaction of 1,4,5,8-naphthalenetetracarboxylic dianhydride with alkylamines ranging from propyl- to undecyl-. The NDIs were characterized by spectroscopic (NMR, UV-Vis, FTIR), microscopic, and thermal methods (TGA and DSC), and X-ray diffraction (XRD). Our experimental study, extensively referring to findings reported in the literature, indicated that the NDIs revealed specific trends in spectroscopic and thermal properties as well as solubility and crystal morphology. The solubility in good solvents (chloroform, toluene, dichlorobenzene) was found to be the highest for the NDIs substituted with the medium-length alkyl chains (NDIC5–NDIC8). Systematic FTIR and XRD studies unraveled a distinct parity effect related to the packing of NDI molecules with odd or even numbers of methylene groups in the alkyl substituents. The NDIs with an even number of methylene groups in the alkyl substituents revealed low-symmetry (P1−) triclinic packing, whereas those with an odd number of carbon atoms were generally monoclinic with P21/c symmetry. The odd–even parity effect also manifested itself in the overlapping of the NDIs’ aromatic cores and, hence, the π-π stacking distance (dπ-π). The odd-numbered NDIs generally revealed slightly smaller dπ-π values then the even-numbered ones. Testing the NDIs using standardized field-effect transistors and unified procedures revealed that the n-type mobility in NDIC6, NDIC7, and NDIC8 was 10- to 30-fold higher than for the NDIs with shorter or longer alkyl substituents. Our experimental results indicate that N,N′-alkylated NDIs reveal an optimum range of alkyl chain length in terms of solution processability and charge transport properties.

Funder

National Science Centre, Poland

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3