A Fast Method for Determination of Seven Bisphenols in Human Breast Milk Samples with the Use of HPLC-FLD

Author:

Szubartowski Szymon12ORCID,Tuzimski Tomasz1ORCID

Affiliation:

1. Department of Physical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland

2. Doctoral School of Medical University of Lublin, Medical University of Lublin, Chodźki 7, 20-093 Lublin, Poland

Abstract

Plastic pollution, where bisphenol A (BPA) is widely used in its production, has gained popularity. BPA omnipresence and toxicity, especially for infants, has led food safety authorities to place restrictions on BPA usage. It has led to the introduction of the marked ‘BPA-free’-labelled products, where BPA is often replaced by other bisphenols (BPs) which are suspected of being similar or even more toxic than BPA. Moreover, the free forms of BPs are more dangerous than their conjugated forms and the conjugation of BPs is less effective in infants than in adults. Considering that human breast milk is the main source of nutrition for infants, the constant biomonitoring not only of BPA, but the wider group of BPs in such crucial matrices seems to be vital. In this study, a fast, simple, ‘green’ and cost-effective DLLME-based extraction technique combined with HPLC-FLD was optimized for the determination of seven selected bisphenols simultaneously. The procedure has satisfactory recovery values of 67–110% with the most RSD% at 17%. The LODs and LOQs ranged from 0.5 ng/mL to 2.1 ng/mL and 1.4 ng/mL to 6.3 ng/mL, respectively. The procedure was successfully applied to the biomonitoring of free forms of BPs in 10 real human breast milk samples.

Funder

Medical University of Lublin

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3