K-Nearest Neighbor and Random Forest-Based Prediction of Putative Tyrosinase Inhibitory Peptides of Abalone Haliotis diversicolor

Author:

Kongsompong SasikarnORCID,E-kobon TeerasakORCID,Chumnanpuen PramoteORCID

Abstract

Skin pigment disorders are common cosmetic and medical problems. Many known compounds inhibit the key melanin-producing enzyme, tyrosinase, but their use is limited due to side effects. Natural-derived peptides also display tyrosinase inhibition. Abalone is a good source of peptides, and the abalone proteins have been used widely in pharmaceutical and cosmetic products, but not for melanin inhibition. This study aimed to predict putative tyrosinase inhibitory peptides (TIPs) from abalone, Haliotis diversicolor, using k-nearest neighbor (kNN) and random forest (RF) algorithms. The kNN and RF predictors were trained and tested against 133 peptides with known anti-tyrosinase properties with 97% and 99% accuracy. The kNN predictor suggested 1075 putative TIPs and six TIPs from the RF predictor. Two helical peptides were predicted by both methods and showed possible interaction with the predicted structure of mushroom tyrosinase, similar to those of the known TIPs. These two peptides had arginine and aromatic amino acids, which were common to the known TIPs, suggesting non-competitive inhibition on the tyrosinase. Therefore, the first version of the TIP predictors could suggest a reasonable number of the TIP candidates for further experiments. More experimental data will be important for improving the performance of these predictors, and they can be extended to discover more TIPs from other organisms. The confirmation of TIPs in abalone will be a new commercial opportunity for abalone farmers and industry.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3