Abstract
Nuclear magnetization storage in biologically-relevant molecules opens new possibilities for the investigation of metabolic pathways, provided the lifetimes of magnetization are sufficiently long. Dissolution-dynamic nuclear polarization-based spin-order enhancement, sustained by long-lived states can measure the ratios between concentrations of endogenous molecules on a cellular pathway. These ratios can be used as meters of enzyme function. Biological states featuring intracellular amino-acid concentrations that are depleted or replenished in the course of in-cell or in-vivo tests of drugs or radiation treatments can be revealed. Progressing from already-established long-lived states, we investigated related spin order in the case of amino acids and other metabolites featuring networks of coupled spins counting up to eight nuclei. We detail a new integrated theoretical approach between quantum chemistry simulations, chemical shifts, J-couplings information from databanks, and spin dynamics calculations to deduce a priori magnetization lifetimes in biomarkers. The lifetimes of long-lived states for several amino acids were also measured experimentally in order to ascertain the approach. Experimental values were in fair agreement with the computed ones and prior data in the literature.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. In-cell NMR: Why and how?;Progress in Nuclear Magnetic Resonance Spectroscopy;2022-10