Computation of Entropy Measures for Metal-Organic Frameworks

Author:

Imran Muhammad1ORCID,Khan Abdul Rauf2ORCID,Husin Mohamad Nazri3ORCID,Tchier Fairouz4ORCID,Ghani Muhammad Usman5ORCID,Hussain Shahid6

Affiliation:

1. Department of Mathematical Sciences, United Arab Emirates University, Al Ain P. O. Box 15551, United Arab Emirates

2. Department of Mathematics, Faculty of Science, Ghazi University, Dera Ghazi Khan 32200, Pakistan

3. Special Interest Group on Modelling, Data Analytics (SIGMDA) Faculty of Ocean Engineering Technology, Informatics Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia

4. Mathematics Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia

5. Institute of Mathematics, Khawaja Fareed University of Engineering & Information Technology, Abu Dhabi Road, Rahim Yar Khan 64200, Pakistan

6. Energy Engineering Division, Department of Engineering Science and Mathematics, Lulea University of Technology, 97187 Lulea, Sweden

Abstract

Entropy is a thermodynamic function used in chemistry to determine the disorder and irregularities of molecules in a specific system or process. It does this by calculating the possible configurations for each molecule. It is applicable to numerous issues in biology, inorganic and organic chemistry, and other relevant fields. Metal–organic frameworks (MOFs) are a family of molecules that have piqued the curiosity of scientists in recent years. They are extensively researched due to their prospective applications and the increasing amount of information about them. Scientists are constantly discovering novel MOFs, which results in an increasing number of representations every year. Furthermore, new applications for MOFs continue to arise, illustrating the materials’ adaptability. This article investigates the characterisation of the metal–organic framework of iron(III) tetra-p-tolyl porphyrin (FeTPyP) and CoBHT (CO) lattice. By constructing these structures with degree-based indices such as the K-Banhatti, redefined Zagreb, and the atom-bond sum connectivity indices, we also employ the information function to compute entropies.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3