Affiliation:
1. Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, School of Water Resource and Environment, Hebei Geo University, Shijiazhuang 050031, China
2. School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
Abstract
In this study, a Z-Scheme WO3/CoO p-n heterojunction with a 0D/3D structure was designed and prepared via a simple solvothermal approach to remove the combined pollution of tetracycline and heavy metal Cr(VI) in water. The 0D WO3 nanoparticles adhered to the surface of the 3D octahedral CoO to facilitate the construction of Z-scheme p-n heterojunctions, which could avoid the deactivation of the monomeric material due to agglomeration, extend the optical response range, and separate the photogenerated electronhole pairs. The degradation efficiency of mixed pollutants after a 70 min reaction was significantly higher than that of monomeric TC and Cr(VI). Among them, a 70% WO3/CoO heterojunction had the best photocatalytic degradation effect on the mixture of TC and Cr(VI) pollutants, and the removing rate was 95.35% and 70.2%, respectively. Meanwhile, after five cycles, the removal rate of the mixed pollutants by the 70% WO3/CoO remained almost unchanged, indicating that the Z-scheme WO3/CoO p-n heterojunction has good stability. In addition, for an active component capture experiment, ESR and LC-MS were employed to reveal the possible Z-scheme pathway under the built-in electric field of the p-n heterojunction and photocatalytic removing mechanism of TC and Cr(VI). These results offer a promising idea for the treatment of the combined pollution of antibiotics and heavy metals by a Z-scheme WO3/CoO p-n heterojunction photocatalyst, and have broad application prospects: boosted tetracycline and Cr(VI) simultaneous cleanup over a Z-scheme WO3/CoO p-n heterojunction with a 0D/3D structure under visible light.
Funder
National Natural Science Foundation of China
Hebei Province 333 Talents Project
Science and Technology Project of Hebei Education Department
Graduate Student Innovation Ability Training Funding Project of Hebei Province
Open Fund for Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse
Hebei Geo University Student Science and Technology Fund
National Pre-research Funds of Hebei GEO University in 2023
2022 Hebei GEO University Undergraduate Innovation and Entrepreneurship Training Program
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献