Impact of Starch Binding Domain Fusion on Activities and Starch Product Structure of 4-α-Glucanotransferase

Author:

Wang Yu1,Wu Yazhen2,Christensen Stefan Jarl3ORCID,Janeček Štefan45ORCID,Bai Yuxiang2,Møller Marie Sofie6ORCID,Svensson Birte1ORCID

Affiliation:

1. Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

2. School of Food Science and Technology, Jiangnan University, Wuxi 214122, China

3. Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

4. Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, SK-84551 Bratislava, Slovakia

5. Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia

6. Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

Abstract

A broad range of enzymes are used to modify starch for various applications. Here, a thermophilic 4-α-glucanotransferase from Thermoproteus uzoniensis (TuαGT) is engineered by N-terminal fusion of the starch binding domains (SBDs) of carbohydrate binding module family 20 (CBM20) to enhance its affinity for granular starch. The SBDs are N-terminal tandem domains (SBDSt1 and SBDSt2) from Solanum tuberosum disproportionating enzyme 2 (StDPE2) and the C-terminal domain (SBDGA) of glucoamylase from Aspergillus niger (AnGA). In silico analysis of CBM20s revealed that SBDGA and copies one and two of GH77 DPE2s belong to well separated clusters in the evolutionary tree; the second copies being more closely related to non-CAZyme CBM20s. The activity of SBD-TuαGT fusions increased 1.2–2.4-fold on amylose and decreased 3–9 fold on maltotriose compared with TuαGT. The fusions showed similar disproportionation activity on gelatinised normal maize starch (NMS). Notably, hydrolytic activity was 1.3–1.7-fold elevated for the fusions leading to a reduced molecule weight and higher α-1,6/α-1,4-linkage ratio of the modified starch. Notably, SBDGA-TuαGT and-SBDSt2-TuαGT showed Kd of 0.7 and 1.5 mg/mL for waxy maize starch (WMS) granules, whereas TuαGT and SBDSt1-TuαGT had 3–5-fold lower affinity. SBDSt2 contributed more than SBDSt1 to activity, substrate binding, and the stability of TuαGT fusions.

Funder

China Scholarship Council

Technical University of Denmark

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Otto Mønsteds Fond

Slovak Grant Agency VEGA

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3