Abstract
Reduced global warming is the goal of carbon neutrality. Therefore, batteries are considered to be the best alternatives to current fossil fuels and an icon of the emerging energy industry. Voltaic cells are one of the power sources more frequently employed than photovoltaic cells in vehicles, consumer electronics, energy storage systems, and medical equipment. The most adaptable voltaic cells are lithium-ion batteries, which have the potential to meet the eagerly anticipated demands of the power sector. Working to increase their power generating and storage capability is therefore a challenging area of scientific focus. Apart from typical Li-ion batteries, Li-Air (Li-O2) batteries are expected to produce high theoretical power densities (3505 W h kg−1), which are ten times greater than that of Li-ion batteries (387 W h kg−1). On the other hand, there are many challenges to reaching their maximum power capacity. Due to the oxygen reduction reaction (ORR) and oxygen evolution reaction (OES), the cathode usually faces many problems. Designing robust structured catalytic electrode materials and optimizing the electrolytes to improve their ability is highly challenging. Graphene is a 2D material with a stable hexagonal carbon network with high surface area, electrical, thermal conductivity, and flexibility with excellent chemical stability that could be a robust electrode material for Li-O2 batteries. In this review, we covered graphene-based Li-O2 batteries along with their existing problems and updated advantages, with conclusions and future perspectives.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Reference189 articles.
1. Grand View Research (2020). Battery Market Size, Share & Trends Analysis Report by Product (Lead Acid, Li-ion, Nickle Metal Hydride, Ni-cd), By Application (Automotive, Industrial, Portable), By Region, And Segment Forecasts, 2020–2027, Grand View Research. Available online: https://www.grandviewresearch.com/industry-analysis/battery-market.
2. Before Li Ion Batteries;Chem. Rev.,2018
3. Lithium Batteries and Cathode Materials;Chem. Rev.,2004
4. Research Development on Sodium-Ion Batteries;Chem. Rev.,2014
5. Research Development on K-Ion Batteries;Chem. Rev.,2020
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献