Phenol Liquefaction of Waste Sawdust Pretreated by Sodium Hydroxide: Optimization of Parameters Using Response Surface Methodology

Author:

Lv Shihao,Lin Xiaoli,Gao Zhenzhong,Hou Xianfeng,Zhou Haiyang,Sun JinORCID

Abstract

In this study, a two-step method was used to realize the liquefaction of waste sawdust under atmospheric pressure, and to achieve a high liquefaction rate. Specifically, waste sawdust was pretreated with NaOH, followed by liquefaction using phenol. The relative optimum condition for alkali–heat pretreatment was a 1:1 mass ratio of NaOH to sawdust at 140 °C. The reaction parameters including the mass ratio of phenol to pretreated sawdust, liquefaction temperature, and liquefaction time were optimized by response surface methodology. The optimal conditions for phenol liquefaction of pretreated sawdust were a 4.21 mass ratio of phenol to sawdust, a liquefaction temperature of 173.58 °C, and a liquefaction time of 2.24 h, resulting in corresponding liquefied residues of 6.35%. The liquefaction rate reached 93.65%. Finally, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) were used to analyze untreated waste sawdust, pretreated sawdust, liquefied residues, and liquefied liquid. SEM results showed that the alkali–heat pretreatment and liquefaction reactions destroyed the intact, dense, and homogeneous sample structures. FT-IR results showed that liquefied residues contain aromatic compounds with different substituents, including mainly lignin and its derivatives, while the liquefied liquid contains a large number of aromatic phenolic compounds. XRD showed that alkali–heat pretreatment and phenol liquefaction destroyed most of the crystalline regions, greatly reduced the crystallinity and changed the crystal type of cellulose in the sawdust.

Funder

Science and Technology Program of Guangzhou

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference53 articles.

1. When fossil fuels run out, what then?;World Environ.,2019

2. Energy efficiency or conservation for mitigating climate change?;Energies,2019

3. A global assessment: Can renewable energy replace fossil fuels by 2050?;Sustainability,2022

4. Economic aspects of the energy transition;Environ. Resour Econ.,2022

5. Research Progress in Biotechnology for Comprehensive Utilization of Lignocellulosic Materials;Guangdong Agric. Sci.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3