A Microporous Zn(bdc)(ted)0.5 with Super High Ethane Uptake for Efficient Selective Adsorption and Separation of Light Hydrocarbons

Author:

Xu Feng1ORCID,Wu Yilu1ORCID,Wu Juan2ORCID,Lv Daofei1ORCID,Yan Jian1ORCID,Wang Xun1ORCID,Chen Xin1ORCID,Liu Zewei1ORCID,Peng Junjie1ORCID

Affiliation:

1. School of Environment and Chemical Engineering, Foshan University, Foshan 528000, China

2. College of Environmental Monitoring, Guangdong Polyytechnic of Environmetal Protection Engineering, Foshan 528216, China

Abstract

Separating light hydrocarbons (C2H6, C3H8, and C4H10) from CH4 is challenging but important for natural gas upgrading. A microporous metal-organic framework, Zn(bdc)(ted)0.5, based on terephthalic acid (bdc) and 1,4-diazabicyclo[2.2.2]octane (ted) ligands, is synthesized and characterized through various techniques, including powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and porosity analysis. The adsorption isotherms of light hydrocarbons on the material are measured and the isosteric adsorption heats of CH4, C2H6, C3H8, and C4H10 are calculated. The prediction of C2–4/C1 adsorption selectivities is accomplished using ideal adsorbed solution theory (IAST). The results indicate that the material exhibits exceptional characteristics, including a Brunauer-Emmett-Teller (BET) surface area of 1904 m2/g and a pore volume of 0.73 cm3/g. Notably, the material demonstrates remarkable C2H6 adsorption capacities (4.9 mmol/g), while CH4 uptake remains minimal at 0.4 mmol/g at 298 K and 100 kPa. These findings surpass those of most reported MOFs, highlighting the material’s outstanding performance. The isosteric adsorption heats of C2H6, C3H8, and C4H10 on the Zn(bdc)(ted)0.5 are higher than CH4, suggesting a stronger interaction between C2H6, C3H8, and C4H10 molecules and Zn(bdc)(ted)0.5. The molecular simulation reveals that Zn(bdc)(ted)0.5 prefers to adsorb hydrocarbon molecules with richer C-H bonds and larger polarizability, which results in a stronger dispersion force generated by an adsorbent-adsorbate induced polarization effect. Therefore, the selectivity of C4H10/CH4 is up to 180 at 100 kPa, C3H8/CH4 selectivity is 67, and the selectivity of C2H6/CH4 is 13, showing a great potential for separating C2–4 over methane.

Funder

National Natural Science Foundation of China

Guangdong Provincial Natural Science Foundation Project

Scientific Research Project of Guangdong Provincial Department of Education

Dean’s Fund of Guangdong Polytechnic of Environmental Protection Engineering

Foshan Engineering Research Center for Novel Porous Materials

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3