Complexation of Boronic Acid with Chiral α-Hydroxycarboxylic Acids and the Ability of the Complexes to Catalyze α-Hydroxycarboxylic Acid Esterification

Author:

Meng Zhonglei1ORCID,Qin Rongxiu1,Wen Rusi1,Xie Junkang1,Chen Haiyan1,Li Guiqing1

Affiliation:

1. Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Guangxi Forestry Research Institute, Nanning 530002, China

Abstract

The complexation of boric acid (BA) with various α-hydroxycarboxylic acids (HCAs) was examined by analyzing the change in the optical rotation after the addition of BA to aqueous HCA solutions, and the catalytic properties of the complexes were examined by catalyzing the esterification of the HCAs. The absolute values of the optical rotation of the HCAs increased with increasing BA-to-HCA molar ratio, and the rate of change of the optical rotation gradually decreased as the BA-to-HCA molar ratio increased, reaching a minimum value at a molar ratio of approximately three. As a catalyst, BA could catalyze the acetylation of hydroxyl groups in addition to the esterification of HCAs. Compared to the conventional synthesis routes of ATBC and ATOC, a synthesis route with BA as the catalyst allowed for a lower frequency of catalyst separation and replacement while providing light-colored products. BA could catalyze the formation of triethyl citrate, and the yield of triethyl citrate reached 93.8%. BA could also catalyze the reaction between malic acid and pinene to produce borneol malate. After saponification of borneol malate, borneol was obtained with a yield of 39%.

Funder

Guangxi Key Laboratory of Superior Timber Tree Resource Cultivation

National Natural Science Foundation of China

Guangxi Zhuang Autonomous Region Forestry Science and Technology Extension Demonstration Project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3