Enhanced Catalytic Soot Oxidation over Co-Based Metal Oxides: Effects of Transition Metal Doping

Author:

Luo Jianbin1,Zhu Xinbo1,Zhong Zhiwei1,Chen Geng1,Hong Yu12,Zhou Zijian3

Affiliation:

1. Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China

2. New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, China

3. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

A series of Co-M (M = Fe, Cr, and Mn) catalysts were synthesized by the sol-gel method for soot oxidation in a loose contact mode. The Co-Fe catalyst exhibited the best catalytic activity among the tested samples, with the characteristic temperatures (T10, T50, and T90) of 470 °C, 557 °C, and 602 °C, respectively, which were 57 °C, 51 °C, and 51 °C lower than those of the CoOx catalyst. Catalyst characterizations of N2 adsorption–desorption, X-ray diffraction (XRD), X-ray photo-electron spectrometry (XPS), and the temperature programmed desorption of O2 (O2-TPD) were performed to gain insights into the relationships between the activity of catalytic soot oxidation and the catalyst properties. The content of Co2+ (68.6%) increased due to the interactions between Co and Fe, while the redox properties and the relative concentration of surface oxygen adsorption (51.7%) were all improved, which could significantly boost the activity of catalytic soot oxidation. The effects of NO and contact mode on soot oxidation were investigated over the Co-Fe catalyst. The addition of 1000 ppm of NO led to significant reductions in T10, T50, and T90 by 92 °C, 106 °C, and 104 °C, respectively, compared to the case without the NO addition. In the tight contact mode, the soot oxidation was accelerated over the Co-Fe catalyst, resulting in 46 °C, 50 °C, and 50 °C reductions in T10, T50, and T90 compared to the loose contact mode. The comparison between real soot and model Printex-U showed that the T50 value of real soot (455 °C) was 102 °C lower than the model Printex-U soot.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3