The Interfacial Dilational Rheology Properties of Betaine Solutions: Effect of Anionic Surfactant and Polymer

Author:

Li Haitao12ORCID,Cui Chuanzhi1,Cao Xulong2,Yuan Fuqing2,Xu Zhicheng3,Zhang Lei3,Zhang Lu3ORCID

Affiliation:

1. School of petroleum engineering, China University of Petroleum (East China), Qingdao 266580, China

2. Exploration & Development Research Institute of Shengli Oilfield Co., Ltd., SINOPEC, Dongying 257015, China

3. Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Interfacial dilational rheology is one of the important means to explore the interfacial properties of adsorption films. In this paper, the interfacial rheological properties of the mixed system of sulfobetaine ASB with a linear alkyl group and two anionic surfactants, petroleum sulfonate (PS) and alkyl polyoxyethylene carboxylate (AEC), were investigated by interfacial dilational rheology. The effect of the introduction of polymer hydrophobically modified polyacrylamide (HMPAM) on the interfacial properties of the mixed system was analyzed. In this experiment, the surfactant solution was used as the external phase and n-decane was used as the internal phase. A periodic sinusoidal disturbance of 0.1 Hz was applied to the n-decane droplets, and the changes of parameters such as droplet interfacial tension and interfacial area were monitored in real time with the help of a computer. The results show that the betaine ASB molecule responds to the dilation and compression of the interface through the change of ion head orientation, while the feedback behavior of petroleum sulfonate PS and AEC molecules embedded with oxygen vinyl groups in the molecule is diffusion and exchange between the interface and the bulk phase. Therefore, the interface film formed by ASB alone is higher, and the film formed by PS and AEC molecules alone is relatively lower. After adding two kinds of anionic surfactants to the betaine system, the ionic head of PS or AEC molecules will be attached to the positive center of the hydrophilic group of ASB molecules by electrostatic attraction and no longer adsorb and desorb with the interface deformation. The interfacial rheological properties of the compound system are still dominated by betaine, with higher dilational modulus and lower phase angle. When a small amount of HMPAM is added, or the content of hydrophobic monomer AMPS in the bulk phase is low, the intermolecular interaction at the interface is enhanced, the slow relaxation process is intensified, and the interfacial film strength is increased. As the content of AMPS further increases, hydrophobic blocks and surfactant molecules will form interfacial aggregates similar to mixed micelles at the oil-water interface, which will regulate the properties of the film by affecting the adsorption of surfactants at the interface. As long as the interfacial tension is the same, the properties of the interfacial film are the same. Based on the colloid interface science and the background of enhanced oil recovery, this study provides a reference for the field application of chemical flooding formulations.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3