Synthesis of New Triazole-Based Thiosemicarbazone Derivatives as Anti-Alzheimer’s Disease Candidates: Evidence-Based In Vitro Study

Author:

Rahim Fazal,Ullah HayatORCID,Taha MuhammadORCID,Hussain Rafaqat,Sarfraz Maliha,Iqbal RashidORCID,Iqbal Naveed,Khan ShoaibORCID,Ali Shah Syed AdnanORCID,Albalawi Marzough AzizORCID,Abdelaziz Mahmoud A.ORCID,Alatawi Fatema SulimanORCID,Alasmari Abdulrahman,Sakran Mohamed I.ORCID,Zidan NahlaORCID,Jafri IbrahimORCID,Khan Khalid Mohammed

Abstract

Triazole-based thiosemicarbazone derivatives (6a–u) were synthesized then characterized by spectroscopic techniques, such as 1HNMR and 13CNMR and HRMS (ESI). Newly synthesized derivatives were screened in vitro for inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. All derivatives (except 6c and 6d, which were found to be completely inactive) demonstrated moderate to good inhibitory effects ranging from 0.10 ± 0.050 to 12.20 ± 0.30 µM (for AChE) and 0.20 ± 0.10 to 14.10 ± 0.40 µM (for BuChE). The analogue 6i (IC50 = 0.10 ± 0.050 for AChE and IC50 = 0.20 ± 0.050 µM for BuChE), which had di-substitutions (2-nitro, 3-hydroxy groups) at ring B and tri-substitutions (2-nitro, 4,5-dichloro groups) at ring C, and analogue 6b (IC50 = 0.20 ± 0.10 µM for AChE and IC50 = 0.30 ± 0.10 µM for BuChE), which had di-Cl at 4,5, -NO2 groups at 2-position of phenyl ring B and hydroxy group at ortho-position of phenyl ring C, emerged as the most potent inhibitors of both targeted enzymes (AChE and BuChE) among the current series. A structure-activity relationship (SAR) was developed based on nature, position, number, electron donating/withdrawing effects of substitution/s on phenyl rings. Molecular docking studies were used to describe binding interactions of the most active inhibitors with active sites of AChE and BuChE.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference36 articles.

1. Neuropsychology of dementia;Adams;Neurol. Clin.,1986

2. The search for disease-modifying treatment for Alzheimer’s disease;Aisen;Neurology,1997

3. Preclinical pharmacology of metrifonate;Jann;Pharmacotherapy,1998

4. Molecular and cellular biology of cholinesterases;Pezzementi;Prog. Neurobiol.,1993

5. Status of acetylcholinesterase and butyrylcholinesterase in Alzheimer’s disease and type 2 diabetes mellitus;Mushtaq;CNS Neurol. Disord. Drug Targets,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3