In Silico Screening of Metal−Organic Frameworks and Zeolites for He/N2 Separation

Author:

Grenev Ivan V.ORCID,Gavrilov Vladimir Yu.

Abstract

In silico screening of 10,143 metal−organic frameworks (MOFs) and 218 all-silica zeolites for adsorption-based and membrane-based He and N2 separation was performed. As a result of geometry-based prescreening, structures having zero accessible surface area (ASA) and pore limiting diameter (PLD) less than 3.75 Å were eliminated. So, both gases can be adsorbed and pass-through MOF and zeolite pores. The Grand canonical Monte Carlo (GCMC) and equilibrium molecular dynamics (EMD) methods were used to estimate the Henry’s constants and self-diffusion coefficients at infinite dilution conditions, as well as the adsorption capacity of an equimolar mixture of helium and nitrogen at various pressures. Based on the obtained results, adsorption, diffusion and membrane selectivities as well as membrane permeabilities were calculated. The separation potential of zeolites and MOFs was evaluated in the vacuum and pressure swing adsorption processes. In the case of membrane-based separation, we focused on the screening of nitrogen-selective membranes. MOFs were demonstrated to be more efficient than zeolites for both adsorption-based and membrane-based separation. The analysis of structure–performance relationships for using these materials for adsorption-based and membrane-based separation of He and N2 made it possible to determine the ranges of structural parameters, such as pore-limiting diameter, largest cavity diameter, surface area, porosity, accessible surface area and pore volume corresponding to the most promising MOFs for each separation model discussed in this study. The top 10 most promising MOFs were determined for membrane-based, vacuum swing adsorption and pressure swing adsorption separation methods. The effect of the electrostatic interaction between the quadrupole moment of nitrogen molecules and MOF atoms on the main adsorption and diffusion characteristics was studied. The obtained results can be used as a guide for selection of frameworks for He/N2 separation.

Funder

Russian Foundation for Basic Research

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-throughput screening of Metal−Organic frameworks for helium recovery from natural gas;Microporous and Mesoporous Materials;2024-03

2. Low-Temperature N2 and He Separation on a HKUST-1 Membrane;Protection of Metals and Physical Chemistry of Surfaces;2023-11

3. Низкотемпературное разделение N<sub>2</sub> и He на мембране HKUST-1;Физикохимия поверхности и защита материалов;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3