Facile Fabrication of Large-Area CuO Flakes for Sodium-Ion Energy Storage Applications

Author:

Sun Xiaolei1ORCID,Luo Feng1ORCID

Affiliation:

1. School of Materials Science and Engineering, Tianjin Key Laboratory for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin 300350, China

Abstract

CuO is recognized as a promising anode material for sodium-ion batteries because of its impressive theoretical capacity of 674 mAh g−1, derived from its multiple electron transfer capabilities. However, its practical application is hindered by slow reaction kinetics and rapid capacity loss caused by side reactions during discharge/charge cycles. In this work, we introduce an innovative approach to fabricating large-area CuO and CuO@Al2O3 flakes through a combination of magnetron sputtering, thermal oxidation, and atomic layer deposition techniques. The resultant 2D CuO flakes demonstrate excellent electrochemical properties with a high initial reversible specific capacity of 487 mAh g−1 and good cycling stability, which are attributable to their unique architectures and superior structural durability. Furthermore, when these CuO flakes are coated with an ultrathin Al2O3 layer, the integration of the 2D structures with outer nanocoating leads to significantly enhanced electrochemical properties. Notably, even after 70 rate testing cycles, the CuO@Al2O3 materials maintain a high capacity of 525 mAh g−1 at a current density of 50 mA g−1. Remarkably, at a higher current density of 2000 mA g−1, these materials still achieve a capacity of 220 mAh g−1. Moreover, after 200 cycles at a current density of 200 mA g−1, a high charge capacity of 319 mAh g−1 is sustained. In addition, a full cell consisting of a CuO@Al2O3 anode and a NaNi1/3Fe1/3Mn1/3O2 cathode is investigated, showcasing remarkable cycling performance. Our findings underscore the potential of these innovative flake-like architectures as electrode materials in high-performance sodium-ion batteries, paving the way for advancements in energy storage technologies.

Funder

Natural Science Foundation of Tianjin

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3