Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment

Author:

Jani Mona,Arcos-Pareja Jose A.ORCID,Ni MingORCID

Abstract

With the rapid growth of industrialization, diverse pollutants produced as by-products are emitted to the air-water ecosystem, and toxic contamination of water is one of the most hazardous environmental issues. Various forms of carbon have been used for adsorption, electrochemical, and ion-exchange membrane filtration to separation processes for water treatment. The utilization of carbon materials has gained tremendous attention as they have exceptional properties such as chemical, mechanical, thermal, antibacterial activities, along with reinforcement capability and high thermal stability, that helps to maintain the ecological balance. Recently, engineered nano-carbon incorporated with polymer as a composite membrane has been spotlighted as a new and effective mode for water treatment. In particular, the properties of zero-dimensional (0D) carbon forms (fullerenes and carbon dots) have encouraged researchers to explore them in the field of wastewater treatment through membrane technologies as they are biocompatible, which is the ultimate requirement to ensure the safety of drinking water. Thus, the purpose of this review is to highlight and summarize current advances in the field of water purification/treatment using 0D carbon-polymer-based nanocomposite membranes. Particular emphasis is placed on the development of 0D carbon forms embedded into a variety of polymer membranes and their influence on the improved performance of the resulting membranes. Current challenges and opportunities for future research are discussed.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3