Structural Characterization and Molecular Model Construction of High-Ash Coal from Northern China

Author:

Zhu Benkang1,Dong Xianshu1ORCID,Fan Yuping1,Ma Xiaomin12ORCID,Yao Suling1,Fu Yuanpeng1,Chen Ruxia1,Chang Ming1

Affiliation:

1. Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. State Key Laboratory of Mineral Processing, Beijing 100160, China

Abstract

High-ash coal, also known as low-grade coal, has becomes a viable alternative in recent years to high-quality coal because available resources have become increasingly scarce due to extensive mining activity. This work aims to provide a comprehensive understanding of the structural characteristics of high-ash coal and construct a plausible molecular structure to elucidate its chemical reactivity in future applications. Its properties were investigated using Solid-state 13C nuclear magnetic resonance (13C NMR), X-ray photoelectron spectroscopy analysis (XPS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The molecular structure was constructed and validated using Material Studio, LAMMPS Software Package, and MATLAB program. The characterization results revealed that high-ash coal contains 72.15% aromatic carbon, significantly surpassing the percentage of aliphatic carbon (27.85%). The ratio of bridgehead carbon to peripheral aromatic carbon was calculated as 0.67, indicating that the pentacene is the main carbon skeleton form in the high-ash coal structure. Furthermore, oxygen-containing functional groups presented as C=O/O–C–O, C–O, and COO– within the structure along with pyridine and pyrrolic structures. Consequently, the molecular structure comprises pentacene with aliphatic carbon chains, such as methylene, that connect the benzene rings and form a three-dimensional network. The results of a simulated IR spectrum and contact angle simulation aligned with the experimental results, validating the molecular structure of high-ash coal. The chemical formula for the high-ash coal model was determined as C203H189N7O61S with a molecular weight of 3734.79.

Funder

National Natural Science Foundation of China

Open Foundation of State Key Laboratory of Mineral Processing

Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province

Shanxi Province returnee research support project in China

Shanxi Applied Basic Research Program

Natural Science Foundation of Shanxi Province in China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3