Elemental Selenium Enriched Nanofiber Production

Author:

Badgar KhandsurenORCID,Prokisch József

Abstract

This study aimed to produce electrospun nanofibers from a polyvinyl butyral polymer (PVB) solution enriched with red and grey selenium nanoparticles. Scanning electron microscopic analysis was used to observe the samples, evaluate the fiber diameters, and reveal eventual artifacts in the nanofibrous structure. Average fiber diameter is determined by manually measuring the diameters of randomly selected fibers on scanning electron microscopic (SEM) images. The obtained nanofibers are amorphous with a diameter of approximately 500 nm, a specific surface area of approx. 8 m2 g−1, and 5093 km cm−3 length. If the red and grey selenium nanoparticles were produced in powder form and suspended to the ethanolic solution of PVB then they were located inside and outside the fiber. When selenium nanoparticles were synthesized in the PVB solution, then they were located only inside the fiber. These nanofiber sheets enriched with selenium nanoparticles could be a good candidate for high-efficiency filter materials and medical applications.

Funder

Stipendium Hungaricum Scholarship Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3