Hydrophilic Silica Nanoparticles in O/W Emulsion: Insights from Molecular Dynamics Simulation

Author:

Liu Shasha,Zhang Hengming,Yuan Shiling

Abstract

Previous studies have been carried out on the effect of silica nanoparticles (SNPs) on the stability of oil–water emulsions. However, the combining configuration of SNPs and oil droplets at the molecular level and the effect of SNP content on the coalescence behavior of oil droplets cannot be obtained through experiments. In this paper, molecular dynamics (MD) simulation was performed to investigate the adsorption configuration of hydrophilic SNPs in an O/W emulsion system, and the effect of adsorption of SNPs on coalescence of oil droplets. The simulation results showed: (i) SNPs adsorbed on the surface of oil droplets, and excessive SNPs self-aggregated and connected by hydrogen bonds. (ii) Partially hydrophilic asphaltene and resin molecules formed adsorption configurations with SNPs, which changed the distribution of oil droplet components. Furthermore, compared with hydrophobic asphaltene, the hydrophilic asphaltene was easier to combine with SNPs. (iii) SNPs would extend the oil droplet coalescence time, and the π–π stacking structures were formed between asphaltene and asphaltene or resin molecules to enhance the connection between oil droplets during the oil droplet contact process. (iv) Enough SNPs tightly wrapped around the oil droplet, similar to the formation of a rigid film on the surface of an oil droplet, which hindered the contact and coalescence of components between oil droplets.

Funder

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference32 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3