Abstract
To reveal the nature of CO2 reduction to formate with high efficiency by in situ hydrogen produced from hydrothermal reactions with iron, DFT calculations were used. A reaction pathway was proposed in which the formate was produced through the key intermediate species, namely iron hydride, produced in situ in the process of hydrogen gas production. In the in situ hydrogenation of CO2, the charge of H in the iron hydride was −0.135, and the Fe–H bond distance was approximately 1.537 Å. A C-H bond was formed as a transition state during the attack of Hδ− on Cδ+. Finally, a HCOO species was formed. The distance of the C-H bond was 1.107 Å. The calculated free energy barrier was 16.43 kcal/mol. This study may provide new insight into CO2 reduction to formate in hydrothermal reactions with metal.
Funder
State Key Laboratory of Pollution Control and Resource Reuse Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献