Development of an HPV Genotype Detection Platform Based on Aggregation-Induced Emission (AIE) and Flow-Through Hybridization Technologies

Author:

Ma Chun-Ho (Charlie),Li Liejun,Cai Shuheng,Lin Pei,Lam Wing-Ki (Kristy)ORCID,Lee Tsz-Him (Ronald),Kwok Tsz-Kin (Ryan),Xie Longxu,Kun Tit-Sang (Tom),Tang Ben-Zhong

Abstract

Genetic mutations can cause life-threatening diseases such as cancers and sickle cell anemia. Gene detection is thus of importance for disease-risk prediction or early diagnosis and treatment. Apart from genetic defects, gene detection techniques can also be applied to gene-related diseases with high risk to human health such as human papillomavirus (HPV) infection. HPV infection has been strongly linked to cervical cancer. To achieve a high-throughput HPV gene detection platform, the flow-through hybridization system appears to be one of the commercialized diagnostic techniques for this purpose. The flow-through hybridization technique is based on a vacuum-guided flow of DNA fragments which is continuously directed toward the oligoprobes that are immobilized on the testing membrane. However, the conventional colorimetric method and signal read-out approach suffers a problem of low sensitivity. On the contrary, fluorescence approaches allow more sensitive detection and broad sensing ranges. In this work, a fluorescent dye HCAP, which possesses aggregation-induced emission (AIE) properties and is responsive to alkaline phosphatase, was developed and applied to the flow-through hybridization platform to achieve HPV genome diagnosis of clinical samples. Also, an automatic membrane reader was constructed based on the AIE-based diagnosis platform which can identify the diagnostic result of patient DNA with a total concordance rate of 100% in the clinical trial.

Funder

Innovation and Technology Commission

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3