Interlaboratory Evaluation of a User-Friendly Benchtop Mass Spectrometer for Multiple-Attribute Monitoring Studies of a Monoclonal Antibody

Author:

Butré Claire I.1,D’Atri Valentina23ORCID,Diemer Hélène45,Colas Olivier6,Wagner Elsa6,Beck Alain6ORCID,Cianferani Sarah45ORCID,Guillarme Davy23ORCID,Delobel Arnaud1ORCID

Affiliation:

1. Quality Assistance sa, Technoparc de Thudinie 2, 6536 Thuin, Belgium

2. School of Pharmaceutical Sciences, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland

3. Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU—Rue Michel Servet 1, 1211 Geneva, Switzerland

4. Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France

5. Infrastructure Nationale de Protéomique ProFI—FR2048, 67087 Strasbourg, France

6. Biologics CMC and Developability, IRPF, Centre d’Immunologie Pierre Fabre, 5 Avenue Napoleon III, 74160 Saint-Julien en Genevois, France

Abstract

In the quest to market increasingly safer and more potent biotherapeutic proteins, the concept of the multi-attribute method (MAM) has emerged from biopharmaceutical companies to boost the quality-by-design process development. MAM strategies rely on state-of-the-art analytical workflows based on liquid chromatography coupled to mass spectrometry (LC–MS) to identify and quantify a selected series of critical quality attributes (CQA) in a single assay. Here, we aimed at evaluating the repeatability and robustness of a benchtop LC–MS platform along with bioinformatics data treatment pipelines for peptide mapping-based MAM studies using standardized LC–MS methods, with the objective to benchmark MAM methods across laboratories, taking nivolumab as a case study. Our results evidence strong interlaboratory consistency across LC–MS platforms for all CQAs (i.e., deamidation, oxidation, lysine clipping and glycosylation). In addition, our work uniquely highlights the crucial role of bioinformatics postprocessing in MAM studies, especially for low-abundant species quantification. Altogether, we believe that MAM has fostered the development of routine, robust, easy-to-use LC–MS platforms for high-throughput determination of major CQAs in a regulated environment.

Funder

CNRS

the University of Strasbourg

the Agence Nationale de la Recherche

the French Proteomic Infrastructure

the Région Wallonne

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference38 articles.

1. Development of an LC-MS/MS peptide mapping protocol for the NISTmAb;Mouchahoir;Anal. Bioanal. Chem.,2018

2. Michels, D.A., Ip, A.Y., Dillon, T.M., Brorson, K., Lute, S., Chavez, B., Prentice, K.M., Brady, L.J., and Miller, K.J. (2015). State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization Volume 2—Biopharmaceutical Characterization: The NISTmAb Case Study, American Chemical Society.

3. Structural Elucidation of Post-Translational Modifications in Monoclonal Antibodies;Li;State-of-the-Art and Emerging Technologies for Therapeutic Monoclonal Antibody Characterization Volume 2—Biopharmaceutical Characterization: The NISTmAb Case Study,2015

4. Multi-attribute method performance profile for quality control of monoclonal antibody therapeutics;Hao;J. Pharm. Biomed. Anal.,2021

5. Development of a quantitative mass spectrometry multi-attribute method for characterization, quality control testing and disposition of biologics;Rogers;mAbs,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3