Eleutherococcus sessiliflorus Inhibits Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL)-Induced Osteoclast Differentiation and Prevents Ovariectomy (OVX)-Induced Bone Loss

Author:

Han Sang-Yong,Kim June-Hyun,Jo Eun-Heui,Kim Yun-KyungORCID

Abstract

The aim of this study was to evaluate the effects of root bark of Eleutherococcus sessiliflorus (ES) on osteoclast differentiation and function in vitro and in vivo. In vitro, we found that ES significantly inhibited the RANKL-induced formation of TRAP-positive multinucleated osteoclasts and osteoclastic bone resorption without cytotoxic effects. ES markedly downregulated the expression of nuclear factor of activated T cells cytoplasmic 1 (NFATc1); c-Fos; and osteoclast-related marker genes, such as TRAP, osteoclast-associated receptor (OSCAR), matrix metalloproteinase-9 (MMP-9), calcitonin receptor, cathepsin K, the 38 kDa d2 subunit of the vacuolar H+-transporting lysosomal ATPase (Atp6v0d2), dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-stimulatory transmembrane protein (OC-STAMP). These effects were achieved by inhibiting the RANKL-mediated activation of MAPK signaling pathway proteins, including p38, ERK, and JNK. In vivo, ES attenuated OVX-induced decrease in bone volume to tissue volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and bone mineral density, but increased trabecular separation (Tb.Sp) in the femur. Collectively, our findings showed that ES inhibited RANKL-activated osteoclast differentiation in bone marrow macrophages and prevented OVX-mediated bone loss in rats. These findings suggest that ES has the potential to be used as a therapeutic agent for bone-related diseases, such as osteoporosis.

Funder

Wonkwang University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3