Affiliation:
1. School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
2. College of Food Engineering, East University of Heilongjiang, Harbin 150060, China
Abstract
In order to improve the safety and quality of lactose-free milk (LFM) Maillard reaction products (MRPs), this study used raw cow’s milk as raw material and lactase hydrolysis to prepare LFM, which was heat-treated using pasteurization and then placed in storage temperatures of 4 °C, 25 °C and 37 °C to investigate the changes in the Maillard reaction (MR). The results of the orthogonal test showed that the optimal conditions for the hydrolysis of LFM are as follows: the hydrolysis temperature was 38 °C, the addition of lactase was 0.03%, and the hydrolysis time was 2.5 h. Under these conditions, the lactose hydrolysis rate reached 97.08%, and the lactose residue was only 0.15 g/100 g as determined by high-performance liquid chromatography (HPLC), complying with the standard of LFM in GB 28050–2011. The contents of furoamic acid and 5-hydroxymethylfurfural were determined by high-performance liquid chromatography, the color difference was determined by CR-400 color difference meter, and the internal fluorescence spectrum was determined by F-320 fluorescence spectrophotometer. The test results showed that the variation range of furosine in lactose-free milk after pasteurization was 44.56~136.45 mg/100g protein, the range of 5-hydroxymethylfurfural (HMF) was 12.51~16.83 mg/kg, the color difference ranges from 88.11 to 102.53 in L*, from −0.83 to −0.10 in a*, and from 1.88 to 5.47 in b*. The furosine content of LFM during storage at 4, 25, and 37 °C ranged from 44.56 to 167.85, 44.56 to 287.13, and 44.56 to 283.72 mg/100 g protein, respectively. The average daily increase in protein content was 1.18–3.93, 6.46–18.73, and 15.7–37.66 mg/100 g, respectively. The variation range of HMF was 12.51~17.61, 12.51~23.38, and 12.51~21.1 mg/kg, and the average daily increase content was 0.03~0.07, 0.47~0.68, and 0.51~0.97 mg/kg, respectively. During storage at 4 °C, the color difference of LFM ranged from 86.82 to 103.82, a* ranged from −1.17 to −0.04, and b* ranged from 1.47 to 5.70. At 25 °C, color difference L* ranges from 72.09 to 102.35, a* ranges from −1.60 to −0.03, b* ranges from 1.27 to 6.13, and at 37 °C, color difference L* ranges from 58.84 to 102.35, a* ranges from −2.65 to 1.66, and b* ranges from 0.54 to 5.99. The maximum fluorescence intensity (FI) of LFM varies from 131.13 to 173.97, 59.46 to 173.97, and 29.83 to 173.97 at 4, 25, and 37 °C. In order to reduce the effect of the Maillard reaction on LFM, it is recommended to pasteurize it at 70 °C—15 s and drink it as soon as possible during the shelf life within 4 °C.
Funder
Key R&D Plan Guidance Projects in Heilongjiang Province, China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Reference55 articles.
1. The effects of cold plasma technology on physical, nutritional, and sensory properties of milk and milk products;Nikmaram;Sci. Direct,2022
2. Comparison of free amino acids in human and cow’s milk at different stages of lactation;Wu;Food Sci.,2018
3. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolism, and significance;Saini;Life Sci.,2018
4. Analysis of Physico-chemical Properties of Raw Milk of Cattle, Buffalo and Yak;Liang;Food Sci.,2013
5. Lactose intolerance: An update on its pathogenesis, diagnosis, and treatment;Catanzaro;Nutr. Res.,2021