First-Principles Study of Atomic Diffusion by Vacancy Defect of the L12-Al3M (M = Sc, Zr, Er, Y) Phase

Author:

Liu Shuai1,Liao Binbin1,Nie Baohua1ORCID,Fan Touwen2,Chen Dongchu1,Zhang Jianglong3,Song Yu4

Affiliation:

1. School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China

2. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China

3. Shenyuan Honors of College, Beihang University, Beijing 100191, China

4. Shenzhen Rspower Technology Co., Ltd., Shenzhen 518000, China

Abstract

Atomic diffusion by the vacancy defect of L12-Al3M (M = Sc, Zr, Er, Y) was investigated based on a first-principles calculation. The point defect formation energies were firstly evaluated. Then, the migration energy for different diffusion paths was obtained by the climbing-image nudged elastic band (CI-NEB) method. The results showed that Al atomic and M atomic diffusions through nearest-neighbor jump (NNJ) mediated by Al vacancy (VAl) were, respectively, the preferred diffusion paths in Al3M phases under both Al-rich and M-rich conditions. The other mechanisms, such as six-jump cycle (6JC) and next-nearest-neighbor jump (NNNJ), were energetically inhibited. The order of activation barriers for NNJ(Al-VAl) was Al3Zr < Al3Y < Al3Er < Al3Sc. The Al3Sc phase had high stability with a high self-diffusion activation barrier, while the Al3Zr and Al3Y phases were relatively unstable with a low self-diffusion activation energy. Moreover, the atomic-diffusion behavior between the core and shell layers of L12-Al3M was also further investigated. Zr atoms were prone to diffusion into the Al3Y core layer, resulting in no stable core-shelled Al3(Y,Zr), which well agreed with experimental observation.

Funder

R & D plan for key areas in Guangdong Province

Science and Technology Program of the Ministry of Science and Technology

Science and technology project in Guangdong

Overseas famous teacher project of Guangdong

Science and technology research project of Foshan

R and D plan for key areas in Jiangxi Province

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3