Secoiridoid Glucosides and Anti-Inflammatory Constituents from the Stem Bark of Fraxinus chinensis

Author:

Chang Hao-ChiunORCID,Wang Shih-WeiORCID,Chen Chin-Yen,Hwang Tsong-LongORCID,Cheng Ming-Jen,Sung Ping-JyunORCID,Liao Kuang-Wen,Chen Jih-JungORCID

Abstract

Qin Pi (Fraxinus chinensis Roxb.) is commercially used in healthcare products for the improvement of intestinal function and gouty arthritis in many countries. Three new secoiridoid glucosides, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2), and 3′′,4′′-di-O-methyl-demethyloleuropein (3), have been isolated from the stem bark of Fraxinus chinensis, together with 23 known compounds (4–26). The structures of the new compounds were established by spectroscopic analyses (1D, 2D NMR, IR, UV, and HRESIMS). Among the isolated compounds, (8E)-4′′-O-methylligstroside (1), (8E)-4′′-O-methyldemethylligstroside (2), 3′′,4′′-di-O-methyldemethyloleuropein (3), oleuropein (6), aesculetin (9), isoscopoletin (11), aesculetin dimethyl ester (12), fraxetin (14), tyrosol (21), 4-hydroxyphenethyl acetate (22), and (+)-pinoresinol (24) exhibited inhibition (IC50 ≤ 7.65 μg/mL) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leuckyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 9, 11, 14, 21, and 22 inhibited fMLP/CB-induced elastase release with IC50 ≤ 3.23 μg/mL. In addition, compounds 2, 9, 11, 14, and 21 showed potent inhibition with IC50 values ≤ 27.11 μM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. The well-known proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), were also inhibited by compounds 1, 9, and 14. Compounds 1, 9, and 14 displayed an anti-inflammatory effect against NO, TNF-α, and IL-6 through the inhibition of activation of MAPKs and IκBα in LPS-activated macrophages. In addition, compounds 1, 9, and 14 stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that compounds 1, 9, and 14 could be considered as potential compounds for further development of NO production-targeted anti-inflammatory agents.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference45 articles.

1. ‘Fraxinus chinensis’ in ‘Flora of China’;Wei,1996

2. The Oleaceae family: A source of secoiridoids with multiple biological activities

3. Secoiridoid glucosides from Fraxinus americana

4. Water-soluble constituents of the root barks of Fraxinus rhynchophylla (Chinese drug Qinpi)

5. Two new coumarins from Fraxinus chinensis Roxb;Zhang;J. Integr. Plant Biol.,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3